

1

Newrl – A Scalable, Compliant and Inclusive Trust Infrastructure

Executive Summary

Much of the innovation in public blockchain technology has remained focussed on the narrow domain

of crypto-native assets. Mainstream use-cases continue to be hard to implement on current public

blockchains. These include loans to small businesses or thin-file borrowers, tokenization of contracts

and assets like property, stocks, invoices, brands etc and active collaborations that require identifiable

persons.

This is partly driven by lack of on-chain identity and inadequate legal enforceability of on-chain

transactions. Both these limitations are also the central tenets of most of the current public

blockchains (i.e. they are “features, not bugs”). Mainstreaming of blockchains is hard also because

current chains are monolithic and difficult to scale, despite several innovations in sharding, layer-2

and inter-chain bridges. Lastly, most of the current public blockchains remain energy inefficient,

opaque in governance and open to creeping centralization.

Newrl (pronounced “neural”) is a layer-1 blockchain aimed at addressing the needs of the real-world

use-cases - such as borrowing and lending, tokenization of assets and easy collaboration amongst

people. It is a “trust network” that uses continuous trust assessment of its participants built from their

own on-chain behaviour as well as their community’s inputs about them. Newrl’s protocol is based on

identity at the chain layer and legally robust tokenization. Also, to take blockchain technology beyond

the highly skilled but relatively small web3 developer community, Newrl employs simple-to-use, low-

cost and highly scalable smart contracts and decentralized autonomous organizations. These are at-

node no-code templates which are parametrized on-chain – analogous to an “app-store” approach to

smart contracts and DAOs.

To enable scalability with decentralization, its consensus protocol uses trust scores of participants and

a human-brain-inspired architecture for attention prioritization. Newrl is also created to enable easy

side-chains and bridges - so that instead of a monolithic architecture, it promotes diversity of

specialized-use sub-networks.

Newrl is built as the blockchain protocol for the real-world applications. It is designed as a foundation

for a scalable, compliant and inclusive web3.

2

Contents
Introduction ... 3	
Background: Limitations of current public blockchains that we are looking to address 4	
Newrl as a blockchain for mainstream finance .. 6	

Identity at protocol layer ... 6	
Trust Network .. 7	
Legally robust tokenization .. 9	
No-Code smart contracts and DAOs .. 11	
Neural architecture of Newrl ... 13	
Mutualization of tokens ... 14	
Transparent protocol governance ... 15	

“Proof of Trust” Consensus Protocol (PoT) .. 15	
Use-cases ... 17	

Microbanks .. 17	
Access, liquidity, and monetizability in real estate .. 18	
Angel Fund DAO Using Unlisted Equity Tokenization .. 19	
Community coin through mutualization of personal guarantee ... 19	
Novel asset tokenization to create new asset types .. 20	
Enabling novel forms of collaboration ... 21	

Way forward .. 21	
References ... 22	
Appendix 1: Proof of Trust Protocol Details .. 23	
Appendix 2: Deriving the summary trust score of a participant .. 37	
Appendix 3: Micro-bank architecture in Newrl ... 38	
Appendix 4: Mutualization of tokens - details ... 40	

3

Introduction
Newrl is a ‘Trust Network’ – a layer-1 blockchain built for mainstream decentralized finance. It enables

individuals and small businesses to access capital from their communities using their credibility and

tokenized assets as collateral. To this end, Newrl simplifies legally robust tokenization of assets like

stocks, properties, and start-up equity. It also enables individuals and small businesses to tokenize

new forms of assets like personal creditworthiness, social media revenue inflows, patents, invoices,

brands, warehouse receipts etc. For illiquid assets, Newrl supports a mutualization mechanism to

facilitate liquidity, also helping their use as a collateral in a loan.

An immediate embodiment of decentralized social finance is ‘microbanks’. These are community-

driven cooperative lending units set up as decentralized organizations on blockchain. Starting with

intra-community lending, microbanks can invite outside institutional pools of debt capital through

frictionless on-chain securitization. A community in this context can be any group of persons with a

similar affinity - be it residents of a town, employees of a company, immigrants from a country, alumni

of a college, enthusiasts of a multi-player game, fans of a movie franchise etc.

The central unique feature of Newrl is the trust scores of its participants - which are influenced by

both the community and on-chain transaction history. Other unique features of Newrl include

confirmed-identity participants through decentralized KYC, legally robust tokenization protocols to

convert real-world assets into on-chain tokens and the use of ready templates for smart contracts as

well as decentralised organisations.

Newrl employs a novel consensus protocol called ‘proof of trust’. Individual nodes are run by real

persons with clear KYC and a presence on the trust network. These nodes participate in validating

transactions and adding blocks - earning governance tokens for good contributions as well as a higher

probability of future selection for block addition. Conversely, they lose their deposited tokens for bad

contributions or malicious behavior and also get a sharp reduction in probability of future selection

for block addition.

The thesis behind Newrl is that there exists a moderate amount of trust amongst individuals and small

businesses that can be harnessed for efficient commercial transactions amongst them - something

that is already common in most real-life transactions. The current public blockchains focus on purely

trustless transactions amongst anonymous participants. This misses out on the benefits of the

informal non-zero trust within a community. Newrl enables explicit recognition and tracking of this

trust amongst its participants. To be clear, Newrl’s transactions and validation protocols are as robust

as those of current public blockchains and do not require mutual trust between transacting parties.

The trust scores are additional features available to the participants to use.

4

For scalability, Newrl’s computations are carried out in a manner inspired by the human brain (hence

the name!). Like the organic neural circuits, Newrl’s computation and storage is robust and yet energy

efficient. The main idea is that decentralisation does not mean endless over-redundancy - something

common to most of the current public blockchains. Newrl’s architecture is based on distributed

storage and computation - which achieves decentralization without repeating all storage and

computations as many times as there are nodes in the network. The aim is to keep the actual cost of

computation and storage within the same order of magnitude as the costs (actual, not the higher ones

charged to customers) of existing centralized systems such as payment rails like Visa and Mastercard

as well as bank transfers.

Background: Limitations of current public blockchains that we are looking to
address
The Bitcoin project[1] ushered in a remarkable era of decentralized handling of value over the internet.

It had a strong anti-establishment bias and was proposed as an alternative to fiat currencies for peer-

to-peer payments. This distracted most lay observers from the revolutionary potential of the

decentralization technology itself, as debates around the projects focussed a lot more on the

economics of fiat currencies and their alternatives.

However, the second generation blockchains - starting with Ethereum[2] - broke free of the payments-

only objective and also diluted the strong aversion to fiat currencies. Instead they focussed on

decentralized handling of generalized transactions including but not limited to payments. This was

driven by use of smart contracts which are autonomous algorithms that execute a predetermined set

of steps in response to specific inputs from the users. Smart contracts allowed issuance of tokens on

a blockchain beyond its primary currency (e.g. ether on Ethereum). This was a promising start to

enable uses of public blockchain in mainstream finance - capital markets, banking, insurance,

remittances and so on.

However, as various start-ups and established firms tried to implement specific use-cases from non-

crypto-native domains in the second generation blockchains, they came across several problems.

Some of the major ones are as below.

1. Handling non-crypto-native assets (or so-called “real world assets”) in a legally robust manner

is difficult in current public blockchains. These platforms are technologically advanced but

legally primitive[3]. The most persistent of these issues for non-native assets is the problem of

double tokenization. There are no solutions to this in the current frameworks, partly due to

5

the aversion - built into existing blockchain projects’ ideology - to the current judicial systems

run by governments.

2. Identity is an afterthought in current frameworks. In non-crypto, real-world transactions, this

is difficult to work with, least of all due to existing regulations on know-your-customer and

anti-money-laundering when it comes to typical assets and loans.

3. Most of the current public blockchains are overly focussed on trustless transaction handling.

In the mainstream economy, there is varying level of trust between parties - ranging from

near-zero to near-perfect[4]. This partial trust is not harnessed in the existing frameworks.

4. Current public blockchains do not have memory of historical behaviour of participants owing

to their focus on anonymity. That misses out a very useful input to assessment of individual

trustworthiness.

5. The current blockchain infrastructure is hard to scale. There is excessive redundancy of

computations and storage - well beyond what is needed for sufficiently decentralized

governance.

6. Smart contracts in current public blockchains are expensive. A very simple contract on

ethereum may cost as much as $500 to deploy while a complex contract can be over

$10,000[6]. They are also prone to bugs and hacks. Complex contracts - of the type that are

likely to be useful in real life - are hard to create and expensive to deploy. Some of them are

even infeasible given the upper limit on contract size byte code.

7. The mining operations are run opaquely by specialist nodes. In recent times, they are known

to routinely pool resources[7] - thus effectively centralising the chain operations without many

of its users even realizing it. In general, there is a chasm between those that maintain the

network without really using it and those that actually use it for something but do not

participate in maintaining it.

8. The control over the blockchain protocol is not decentralized for most of the current public

blockchains. While some projects are spread out in terms of control over their codebase, the

‘community’ managing it does so without formal voting mechanisms. Several other projects

are centrally controlled. Of course, a few good exceptions like MakerDAO do exist.

9. Current public blockchains are built with one currency for each chain - leading to

concentration of influence. There is also an obvious conflict of interest in reducing the cost of

transactions on the blockchain because it may reduce the value of the underlying currency in

which this cost is paid.

Some of the above problems are based on the legacy of current projects in the liberatarian/anarchist

anti-establishment ethos that was and is widely shared by early adopters of bitcoin. Hence many issues

6

like lack of identity and presence of a platform currency are not bugs but features of these projects.

Some of the other problems, while solvable, require a lot of tweaks.

There is a strong case for a mainstream-focussed blockchain to begin afresh by incorporating a lot of

the good innovations from the present state of the art in the crypto-native domain while squarely

addressing the above limitations at the design level itself. This approach is likely to be more fruitful in

the medium term than trying to introduce ‘patches’ to existing blockchain projects.

Newrl as a blockchain for mainstream finance
The limitations mentioned in the previous section are why Newrl was conceptualized as a fresh start.

Besides a novel consensus protocol named ‘Proof of Trust’, there are several features unique to Newrl

that enable it to address these limitations of existing blockchains.

a. Identity at protocol layer

b. Trust network

c. Legally robust tokenization

d. No-code templatized smart contracts and distributed organizations

e. Neural architecture of Newrl

f. Mutualization of tokens

g. Transparent protocol governance

We describe the above features in greater detail in this section. The ‘Proof of Trust’ consensus protocol

is described in the next section.

Identity at protocol layer
Each wallet on Newrl is linked to specific documents that prove the identity of a person - be it a natural

person or artificial (e.g. a company). The documents themselves are maintained either locally at the

user’s end or with an institutional record-keeper based on the user's preferences. The hash of the

document number as well as the document’s digital copy is stored on-chain.

In addition to the hashes of identity-proving documents, each wallet also incorporates information

about jurisdiction of the user and other attributes like the user being an accredited investor. Such

information is useful in compliance with regulations around the underlying assets of tokens.

Newrl’s transaction validation protocols require that the public address used for creating them belong

to a ‘KYC-ed’ wallet. The full list of these wallets is stored in the state database. To be included in this

list, a user has to create a new wallet by submitting hashes of the KYC documents as mentioned above

7

while storing the documents themselves with an institutional record-keeper or locally. In either case,

the addition of a new wallet to the state database is carried out through an explicit transaction

(labelled ‘type 1’) on the blockchain. This transaction is signed by the institutional record-keeper or

one of the existing users with a valid wallet (someone that vouches for the identity of the new person)

depending on the choice of the user for document storage.

All activities on Newrl involve the use of such KYC-compliant, verified identity wallets. This includes

economic transactions as well as validation and block creation.

The identity portion of Newrl, for individuals, can be further generalized in future to make it based on

entirely decentralized identification whereby an individual stores iris and fingerprint information

locally on her device and submits the hashes of these to the chain. Additionally, individuals vouch for

each other’s identity, making the whole trust network robust over time. As this becomes mainstream,

reliance on government-provided identity documents will wane. Artificial persons like companies can

be identified through their creators’ identities.

Trust Network
The trust network is a system to create and maintain a network of peer-to-peer scores of

trustworthiness based on user-defined values and transaction-based updates to them. In the abstract,

the trust network consists of the following components.

1. Persons:

Each person is identified by a personId. One person can have the maximum of one personId

in Newrl. However, it can be mapped to multiple wallets. This is akin to a person having a

single tax id but multiple bank accounts all mapped to it.

2. Connections between pairs of persons:

A connection is defined as a link with exactly one source person and one destination person.

Connections are unidirectional.

3. The trust score of a connection:

Each connection has a trust score which is a real number between -1.0 and 3.0. The trust score

indicates the assessment of trustworthiness of the destination person in the eyes of the

source person.

4. Transactions:

Each person can carry out a transaction that may involve one or more of the other persons. A

transaction may also have only one person involved in it.

5. History:

8

As a blockchain, Newrl has a full history of transactions. This can be used by the participants

as they deem fit to derive a summary score of the participant’s behaviour. The network itself

does not have specific algorithms to convert the history into a history-based score.

6. Mechanisms to modify the trust score of a connection:

The trust scores for each connection can be modified by the source person of that connection.

It also gets refined with each transaction that involves the two persons. Also, inaction like non-

adherence to a contractual obligation by a person alters the trust score. The source person

can always reset the value of trust score for a connection, overriding any automatic updates

it might have had.

7. Network integrity maintenance by verification protocols:

On Newrl, anyone can report suspicious activity by a specific person on the network. Upon

such a request, specifically designated auditor nodes can verify the accuracy or lack thereof

of such reports. If a person is verified to be engaged in malicious activity, his/her/its personId

is included in the grey list table in the state of the network, available to all participants to view,

and network trust score (described below) of that person is reduced to -1.

The trust scores can be queried by any participant in Newrl. For instance, in the use case of borrower

assessment in a lending transaction between persons who do not already have a high-trust

relationship, the lender can check the distance on the trust network between the borrower and herself

and also the trust scores of the outward connections from the lender to the borrower. The lender can

also check the historical behavior of the borrower in previous transactions - lending or otherwise.

Trust network schematic is described below in diagram 1.

Diagram1 : The trust network in the abstract and concrete

9

Since Newrl is a public blockchain, we expect several alternative algorithms to evolve that will use the

trust score and transaction history information. Other use-cases involve counterparty risk assessment

in a contract between two small businesses, evaluation of an entrepreneur by angel investors, a real

estate transaction escrow etc.

Overall, the trust network can be used in three different ways.

A. Peer to peer assessment of one person on the network by another for a proposed new

transaction, based on the multiple paths connecting the two persons.

B. General trustworthiness assessment of a person by another person without reference to

specific path connecting the two on the network.

C. Assessment of a person based only on the history of transactions carried out by them.

Appendix 2 describes the use of summary trust score using an algorithm similar to Google’s PageRank.

Legally robust tokenization
Unlike the current public blockchains, token issuance in Newrl is not subsumed under smart contracts.

Also there is no hierarchy of tokens where the native currency of the blockchain is the primary unit of

account. All tokens have the same importance on Newrl. The balances of tokens in wallets are

maintained in the state database in Newrl, unlike the current blockchains where token-specific data

is stored inside its smart contract, making it prone to bugs and hacks.

Token issuance itself is a standard transaction type (labelled ‘type 2’). It is signed by a “custodian” -

which refers to the actual asset keeper in case of custody-based tokenization and creator of the asset

in case of native issuance based tokenization (see below for further details). There is a ‘first owner’ of

a token in whose wallet the newly created tokens are added. Upon successful inclusion of a token

creation transaction in a block, the state database is updated for the new token and the balance of

the first owner’s wallet is updated with the new token.

To make the tokenization legally robust, Newrl includes two-way mapping of underlying contracts to

tokens. To link the tokens or smart contracts on blockchain with a typical legal contract outside the

blockchain, the executed legal contract document is cryptographically hashed. Next, this hash is

included in the transaction submitted to the blockchain network for validation and inclusion in the

next block. In the legal document itself, the blockchain is identified through its genesis block hash, one

of the recent block hashes and the token creation transaction itself through its identifier on the

blockchain. This is described in diagram 2 below.

10

Diagram 2: Two-way mapping of an off-chain contract and on-chain token

Assets as well as cash-flow-bearing contracts can be tokenized[8]. Assets can be tokenized through

either custody-based issuance or native issuance. Contracts can be tokenized through native issuance.

a. Asset tokenization through custody

In this mode, the asset - financial or real - is transferred by an owner to a pre-identified asset-

keeper. The asset-keeper and the owner execute a contract that transfers the beneficial

ownership and interest in that asset back to the owner from the asset-keeper in the form of

tokens created on a blockchain. The ownership of tokens is based on the wallet they belong

to on the blockchain. The tokens are transferable. They can also be converted back into the

asset (i.e. de-tokenized) by their owner. This is represented in the diagram 3 below.

b. Asset tokenization through native issuance

Native issuance refers to the tokens created being the sole representation of the asset. It

works in instances where the issuer/creator of the asset is involved in the tokenization

process. The issuer/creator moves its ownership records of the asset (e.g. a share register) to

the blockchain and creates transferrable new tokens that refer to the asset issuance contract

(e.g. shareholding agreement or bond issue document) through the two-way mapping process

described above. In case of native issuance, since the tokens directly represent the asset,

there is no custodian or asset-keeper involved.

11

Diagram 3: Asset tokenization through custody

c. Contract tokenization through native issuance

Contracts like loans, derivatives and revenue sharing arrangements are tokenized by creating

a new token mapped to the specific executed contract, as mentioned above. In case of

contracts, it is important to note that the underlying conditions of the contract should also be

translated into smart contracts on the blockchain platform, to the extent they are

deterministic. An important reason to tokenize a contract is to enable it to be transferred. This

part too needs to be in line with the underlying contract’s specifications about the feasibility

of transferability of participation in that contract.

A more detailed description of tokenization is covered in a separate white paper.

No-Code smart contracts and DAOs

Given the focus of Newrl to be scalable for mainstream finance use-cases, it uses node-level templates

for smart contracts and decentralized organizations. In this approach, instead of burdening the chain

with the full bytecode of each contract, only parameters are stored on-chain while templates are

drawn from codebase in local nodes. This approach gains in scalability and robustness by giving up the

high (and typically quite underutilized) versatility of an all-purpose 2nd generation blockchain like

ethereum.

12

Smart contract and DO templates are created by the developer community and each node has the full

codebase for the templates. The idea behind templatizing is that more than 90% of use-cases,

especially within a specific industry like finance, are covered by just 1% contract types.

The contract super-types and types at the beginning are as below.

1. Loans - secured/unsecured, bullet repayment/spread out repayment.

2. Aggregation and splitting - many contributors to one pool, one inflow split into many

recipients; useful for creating pools/funds from individual assets.

3. Tranching of risk - waterfall of payment preferences; useful for securitization of loans.

4. Mutualization - described above.

Smart contracts can be combined as well as nested. For example, one set of persons can join hands to

aggregate their tokens and then mutualize the pooled tokens with another aggregated contract’s

tokens.

Smart contracts follow a three-step process for creation and deployment.

a. The creator of smart contract instantiates a specific contract by specifying a template using a

transaction of ‘type 3’. This creates ‘child transactions’ which may include transfers, wallet

creation, token creation etc.

b. The participants in the contract sign the child transactions and submit them to the network.

These are confirmed upon additions to blocks or rejected if not valid.

c. If the prescribed minimum number (which can be all) of child transactions are confirmed, the

creator triggers deployment of the contract. This makes the contract ‘live’ and from this point

onwards its code executes upon triggers based on calls by other transactions or time.

The decentralized organization templates included in Newrl protocol at the beginning are as follows.

1. Membership DAO - enables confirmation of membership of a group using rules set by the

community.

2. Microbank - enables pooling of money tokens to lend and tranching of risk of loans. Described

further in appendix 3.

3. Mutualized insurance - enables pooling of money tokens as premia received from insured

persons and pays out to specific claims upon insurable events having occurred.

4. Decentralized exchanges - enables trading of specific tokens in a decentralized manner.

5. Venture funds - enables pooling of money tokens to fund new projects in exchange for equity

ownership in them.

6. Mutual funds - enables pooling of money tokens to invest in listed securities.

13

7. On-chain firm - enables creation of a typical business vehicle with founders, management,

employees and passive investors. Allows diverse types of ownership in the full spectrum

between employee and investor. Includes one-person firms that enable artists to raise funding

for specific projects as well as as a general investment in their work.

8. On-chain non-profit organization - enables creation of a non-profit business that accepts

contributions and deploys them for specific non-profit purposes (philanthropy, academic

research, social sector projects etc).

When a user instantiates a DAO template on Newrl, they create a DO wallet and trigger specific child

transactions relevant to the DO’s deployment. This is similar to the smart contract deployment above.

The DO templates differ in that they allow a wider leeway for changes in the contracts governing the

DO. The primary thrust of a DO is to enable multi-user governance. As such, the DO template includes

a variety of multi-signature rules for its main wallet and sub-wallets. Overall, a DO is expected to be a

persistent collective of human users that have a transient set of rules governing it.

Neural architecture of Newrl

Architecture of Newrl is inspired by the human brain - hence the name! The brain is a system based

on distributed computing and storage[9]. It is plastic and robust to considerable damage to one or more

of its parts. It is also energy efficient while still being robust in data retention and processing reliability.

This is made possible by the generalized design of individual subsystems carrying out specific functions

and coordinating with other subsystems for creating a coherent outcome. Also, there is a dynamically

shifting ‘attention’ – which activates only specific parts of the brain at a point of time and not the

whole brain. This attention is proportional to the relevance of external stimuli to the wellbeing of the

organism.

Newrl is designed along similar principles, described below.

1. Each node on the network stores only part of the data required for the operation of the

blockchain.

2. Each node participates in only part of the computation during the operations.

3. All transactions and all blocks are not equal. Some are more valuable than others. The network

spends more resources on larger-value transactions and blocks than smaller-value

transactions.

The reduced participation mentioned in 1 and 2 above is managed through random selection of block-

creating sub-group of nodes as well as random selection of transaction validators. Point 3 above is

14

implemented through reducing or increasing the number of block creators as well as number of

transaction validators based on the importance accorded to the transaction by its proposers – through

the transaction fees. The degree of ‘distributedness’ is a function of both the size of the state and

chain as well as the size of the network. At the beginning, when the network is small and so is the

blockchain, this architecture defaults to full redundancy across all nodes. However, as the size of the

chain increases, distribution of storage and computations kick in.

This allows Newrl to be highly scalable right from the beginning. Distributed nature of its storage and

computation keeps the real costs of transactions on Newrl within 1 order of magnitude of the costs of

centrally managed ledgers like payment systems. A detailed description of this architecture is covered

in a separate white paper.

Mutualization of tokens
Tokenization by itself has limited utility if there is no liquidity. To this end, Newrl enables mutualization

of individual tokens into supertokens that greatly expand the pool of interested persons in trading it.

This enables owners of individual tokens to access liquidity for their own tokens by converting them

into mutualized tokens. It also gives greater monetizability to individual tokens in their use as

collateral, because lenders can mutualize a token to sell it while enforcing a loan repayment.

Diagram 4: Mutualization of illiquid asset tokens

15

Mutualization also helps reduce risk. The idea behind mutualization is pooling of individual assets to

create a pool without having to use money transfer for the transaction. The mutualization process is

described in detail in appendix 4. Diagram 4 above shows the same pictorially.

Transparent protocol governance
Newrl’s governance is managed by the community through its governance tokens. The code repository

is in the public domain. Specific changes to it can be suggested by anyone through pull requests. The

governance token owners vote on proposed changes and the accepted ones are implemented by ASQI

- acting as the custodian of the code. Over time, such code changes will be automated by linking them

to smart contracts on Newrl controlled by the governance tokens directly. This will remove even the

limited dependence on the custodian of the code. However, even in the current version, the changes

continue to be transparent to the public.

“Proof of Trust” Consensus Protocol (PoT)

There are three types of computations carried out in a typical public blockchain[10].

1. Transaction validation when transactions are submitted by individual nodes to the network

2. Block creation using validated transactions

3. Verification of a block upon its broadcast and reception by other nodes, and subsequent

update of local state and chain for valid blocks

Transaction handling

In PoT, Any node can broadcast a transaction to its peers. Upon receiving a transaction, the receiving

node validates the transaction and if found valid, broadcasts it onwards to a specific number of peers

only. This number is a function of network size and transaction fee. For a small network, transactions

are sent to all peers. Further details are covered in appendix 1. Receiving peers ignore transactions

that they already have (checked using transaction id). All valid transactions are stored in the local

memory pool by each peer.

Block creation

PoT involves block creation by a chosen node and verified by a randomly selected committee. There

is no competition for adding a new block and no proof of work required to agree on a new block

addition. Instead, for arriving at consensus, the network undertakes the following steps in each period

of time for block creation.

16

1. Each node executes a “validation nodes selection program” to select the minting node and

the committee, where the selection probability is proportional to the network contribution

trust scores of the live nodes.

2. The node minting a new block incorporates as many transactions in its local memory pool as

fit a single block - ordered in terms of their timestamp.

3. The node also runs the ‘network trust score updater’ algorithm using receipts from the

previous block creation process.

4. The selected node mints the block and broadcasts it to others in the committee. The broadcast

includes the block data and signature of the minting node.

5. The selected node also updates its local state. The transaction fees from all included

transactions in the block are transferred to the treasury address of Newrl. The treasury pays

out the pool periodically and proportionately to the owners of Newrl governance tokens.

6. The others in the committee verify the block using the block validation algorithm.

7. If the added block is not signed by the expected node selected for minting, they ignore it and

wait for the correctly signed block. If the correctly signed block received by them is valid, the

committee members append it to their local copies of the chain, broadcast to other

committee members signed receipts.

8. If the received block is signed correctly but is invalid, the committee members do not append

the block to their local chain and just send their own signed receipts with the block index,

block hash and their “-1” vote.

9. Other members receive the receipts and include them in their own memory pool upon

validating them.

10. At this point, each node in the committee calculates the score-weighted probability of a block

being valid, using the available receipts, with receipts from more trusted nodes weighing more

than those from less trusted ones.

11. If the block is valid, the committee members individually broadcast the block along with their

local signed receipts of the committee members (including their own) to their peers in the

network.

12. If the added block is invalid, the committee members ignore it and instead individually mint

an empty block with the timestamp equal to that of the previous block plus 1 second and

broadcast their list of receipts along with the empty block.

13. In case of non-live minting node or inadequate quorum, the committee members add an

empty block after waiting for a stipulated time for a new block.

17

Each node is also required to deposit a fixed number of valuable tokens of any type in a dedicated

smart contract that governs the protocol. In addition to reducing the trust score of a node that

produces erroneous blocks, its deposit in the smart contract is reduced and added to the deposit of a

specific audit cost pool address.

Repercussions of voting

Each process of validation of a block results in a vote by a committee member of the block being valid

or not. These receipts are broadcast at first by their creator and then onwards like standard

transactions by the others in the network. At the time of new block addition, the minting node

incorporates as many receipts as possible, with preference to older receipts, inside a special “network

trust score update” transaction.

The network score update algorithm uses the receipts with a specific logic that rewards honest nodes

and punishes dishonest nodes based on receipt vote and actual status of the block.

A detailed description of the PoT protocol is in appendix 1.

Use-cases
Since Newrl is aimed squarely at mainstream finance, it is useful to look at specific use-cases that are

enabled by it. While some of these can be implemented in the current public blockchains, the issues

related to anonymity, lack of robust legal basis and scalability continue to remain as significant

challenges, besides the full list described earlier in this document.

Microbanks
The common limitation of a peer-to-peer lending system is that the pool of individual/small business

borrowers is large but that of individual lenders is limited. Institutional debt capital is typically easier

to tap into but is constrained by limited trust in the loans. A microbank removes this friction by making

the community as the primary lenders, underwriters and junior lenders in a loan, while institutional

debt capital is secondary and senior lender. This achieves several objectives, difficult to meet in a

purely “lend-to-a-stranger” model of conventional p2p platforms.

- The primary lenders know the borrower and thus can tap into their informal but reliable

assessment of the latter.

- The primary lenders also act as junior lenders in the tranched securitized cash flows of the

loans. This makes the senior lenders believe in their assessment even more.

18

- Both primary and secondary lenders are exposed to a pool of loans instead of a specific loan.

- The lenders collectively control the sign-off on each borrower. This utilizes the wisdom of the

crowd and reduces possibilities of fraud.

- The borrowers have added incentive to not wilfully default because they know the lenders. It

is not an unknown stranger that is affected by their default.

Microbank as a decentralized organization template in Newrl allows any group of persons to come

together and start to lend amongst themselves. The trust network allows easy coordination amongst

persons as they form the group. While every person does not know every other person well, they are

brought together through a few strong ties of high trust amongst several pairs of them.

Use of community’s assessment of a borrower can significantly improve credit access to currently

underbanked segments[11]. A more detailed microbank architecture is described in appendix 3.

Access, liquidity, and monetizability in real estate
Consider the case of property tokenization by several individuals. Each of these tokens are based on

specific houses which are unique even if similar. Hence for an outside investor, the specificity of each

property and its token is likely to be a hindrance in buying the tokens. The resources required for

assessment of each token may not justify investing small amounts in them. Hence, despite having

fractionalized the property, the tokens may not find adequate interest from outsider investors.

If these property-owners were to mutualize their property tokens, the mutualized token starts to

represent a specific neighbourhood, a city or even a state, depending on the number and diversity of

contributors. For a passive outside investor, this is a much easier assessment to make. The

diversification of individual risk achieved by mutualization greatly helps reduce the need for single

property assessment.

An important implication of mutualization is the reduction in the number of individual tokens that

need to be liquid. In absence of mutualization, if N tokens are created, all N need to be individually

liquid. However, if these N tokens are mutualized, the output is tokens of only one type. The bare

minimum number of interested parties for trading in this one type of mutualized token is N (i.e. the

contributors). If each property had on an average K interested parties in it, the interested investor

pool now expands to N*K. This can be adjusted for overlaps in interest by introducing an ‘overlap

factor p’ (with value between 0 and 1) thus making the number of interested parties N*K*(1-p).

The increased outside interest in purely passive investment in a specific class of properties will add to

this pool, which was otherwise not interested in individual property tokens. This takes the total pool

19

size to N*K*(1-p) + O where O is a function of N itself as well as the quality of the pool (combination

of similarity in theme and diversity in idiosyncratic risk).

The overall increase in interested parties is from 1+K to N*K(1-p)+O. Given the non-linear nature of

liquidity growth in asset markets, this can significantly improve tradability of the mutualized tokens,

thus benefiting all the property owners as well as the investors. This is described further in appendix

4.

Angel Fund DAO Using Unlisted Equity Tokenization
The case for mutualized start-up equity is similar. In this context, the interested investor pool in each

start-up’s equity includes the founder, angel investors and employees. Even start-ups in a given sector

mutualize their equity tokens, the individual contributors benefit from gaining exposure to the overall

sector without being too reliant on a single company’s fortunes. Similar to the real estate example,

this can also attract outside capital which would have otherwise stayed out owing to lack of bandwidth

in evaluating each individual company.

The supertoken can also be thought of as an angel fund, set up as a DAO. Such a DAO can issue more

ownership tokens to raise money to invest in its constituent companies as well as new companies

similar in theme. The DAO can manage the investment decisions.

The value of employee stock options is a lot more immediate for the employees because they can

contribute their shares to the mutualized pool and get a lot more liquid ‘supertoken’. The very

availability of this option also prompts easy monetizability of the individual tokens as well as

mutualized token through their use as collateral in a loan because the lender is aware of the ease with

which the token can be sold - directly or post-mutualization. This is described further in a separate

paper.

Community coin through mutualization of personal guarantee
IOUs issued by individuals can be mutualized to create a common currency amongst them. Typically,

a person would accept an IOU token from another person either in the context of the latter borrowing

from the former or postponing a payment to the former. It is not common to use IOUs to fully settle

payment obligations. However, if a sufficiently large group of individuals mutualizes its IOUs, they can

start accepting the mutualized collective IOU for settling payment obligations.

This is tantamount to a fiat currency issued by the collective of individuals. It is backed by their

collective creditworthiness as well as willingness to accept it as payment (for goods and services as

well as assets). If the collective creditworthiness of the participants is high enough, outside users can

20

also choose to use the mutualized IOU for payments involving the participants i.e. to pay them or be

paid by them. Furthermore, for a mutualized IOU backed by a sufficiently large number of participants

of adequately high creditworthiness, the outside users may even choose to use it for payments

amongst themselves i.e. where neither party to a payment is one of the participants of the

mutualization pool.

The mutualization process can also be stacked. Hence multiple mutualized IOUs can themselves be

mutualized thus pooling an even larger number of participants. The logical conclusion of this process

would be a global fiat currency that is a mutualized IOU of all participants in the global economy. Short

of and in addition to this final step, there can be several city-level, state-level mutualized IOUs. Also,

non-geographic collectives of individuals may choose to mutualize their IOUs based on common

interest and/or background (e.g. alumni of an illustrious institute).

The immediate relevance of mutualization of IOUs is to enable groups of people to create money for

suitable end-uses without having to rely exclusively on the banking system. In the current financial

system, only banks can create new money based on their lending and as allowed by regulations like

capital adequacy. This system is inherently inegalitarian and is often quite discriminatory. By enabling

individuals to tap into their collective creditworthiness, mutualized IOUs put the power to improve

their economic wellbeing in their own hands.

The long term relevance of such mutualization is to decentralize the conduct of fiscal and monetary

policy. Currently, much of the fiscal and monetary policy is driven top down by the central bank and

the government. A given policy choice need not be suitable for a whole country and at all points of

time because of the inherent diversity of the constituents. By decentralising the policy conduct,

mutualized IOUs can stabilise business cycles and improve economic wellbeing of all sections of

society.

Novel asset tokenization to create new asset types
Conventionally, assets referred to real ones like properties and gold or financial ones like stocks,

bonds, ETFs. Other objects of value like patents, warehouse receipts, brands are referred to as ‘assets’

in an accounting sense but are rarely traded or fractionalized.

Tokenization of such assets can enable wider access to them for investors. It can also enable novel

forms of collaboration - for example a researcher can raise money for a project with a pre-sale of a

patent token for the outcome of the project.

21

Enabling novel forms of collaboration

The limited liability company has remained the chosen form of business collaboration for centuries.

While it has its benefits of standardization and regulatory reliability, it is somewhat constraining when

it comes to collaborations in the information age.

While the theory of the firm in the 19th and 20th centuries was based on bringing together land, labor,

capital and entrepreneurship, the firm of the 21st century needs a different set of ingredients. Most

of the modern-day firms are based on bringing together human capital, machine intelligence and

ecosystem. In trying to fit this in the conventional form, most entrepreneurs are forced to chase

passive capital which they then use to pay employees and other ecosystem contributors to their

business.

It is much easier to collaborate for individuals, machine-intelligence-owners and ecosystem

participants directly through the tokens of ownership in the enterprise. This was brought out nicely in

several coin offerings over the last few years. While crypto-projects are a good demonstration of this

approach, it is by no means limited to crypto-domain. A non-crypto start-up, say in the consumer

healthcare space, can equally well use this approach to build a business.

Way forward
Newrl is aimed at generalized non-crypto-native use-cases in mainstream finance. Hence it has some

fundamentally new features in its architecture as a blockchain - including identity and legally robust

tokenization. It also has other features that enable a more effective execution of the proposed

objective of decentralized social finance - including trust network, templatized smart contracts and

decentralized organization.

It is our hope and expectation that decentralized social finance will evolve into a broader decentralized

economy that enables new ways of collaborating for individuals. This will expand the scope of our

economic activities well beyond the straitjackets of firms employing individuals, borrowing from banks

and raising money from institutional funds. A decentralized economy will be a much more exciting

cornucopia of decentralized organizations with diverse objectives, participatory models and payoff

structures for their participants, raising financial and human capital through a wide array of vehicles

and participant-types.

The current blockchains have established the foundational technology of trustless transactions in a

decentralized ledger. Newrl aims to be the next-generation blockchain that builds on these

foundations to enhance the varying levels of trust that already exists amongst participants in a real

22

economy, using smart contracts that make contract formation and enforcement frictionless and a

trust network that deters against wilful misconduct while rewarding honest behaviour.

References
[1] Nakamoto, Satoshi, Bitcoin: A Peer-to-Peer Electronic Cash System, https://bitcoin.org/bitcoin.pdf,
retrieved 14th January 2022

[2] Ethereum Foundation, Ethereum Whitepaper, https://ethereum.org/en/whitepaper/, retrieved
14th January 2022

[3] Savelyev, Alexander, Some risks of tokenization and blockchainizaition of private law, Computer
Law & Security Review, Volume 34, Issue 4, August 2018, Pages 863-869

[4] Putnam, Robert, Social Capital: Measurement and Consequences, OECD,
https://www.oecd.org/innovation/research/1825848.pdf, retrieved 31st December 2021

[5] Kaur, Gagandeep, Gandhi, Charu, Scalability in Blockchain: Challenges and Solutions, Handbook of
Research on Blockchain Technology, 2020, Pages 373-406

[6] Eric, How much does it cost to deploy a smart contract on Ethereum?, https://medium.com/the-
capital/how-much-does-it-cost-to-deploy-a-smart-contract-on-ethereum-11bcd64da1, retrieved
10th January 2022

[7] Reiff, Nathan, Why Centralized Cryptocurrency Mining Is a Growing Problem,
https://www.investopedia.com/investing/why-centralized-crypto-mining-growing-problem/,
retrieved 2nd January 2022

[8] OECD, The Tokenisation of Assets and Potential Implications for Financial Markets,
https://www.oecd.org/finance/The-Tokenisation-of-Assets-and-Potential-Implications-for-Financial-
Markets.pdf, retrieved 30th November 2021

[9] Harvey, Andrew, Your brain is a distributed system, https://medium.com/@mootpointer/your-
brain-is-a-distributed-system-80aa1b6611c0, retrieved 10th January 2022

[10] Zhang, Shijie, Lee, Jong-Hyouk, Analysis of the main consensus protocols of blockchain,
ScienceDirect, ICT Express 6 (2020) 93-97

[11] Dar, Ishaq Ahmad, Mishra, Mridula , Dimensional Impact of Social Capital on Financial
Performance of SMEs, https://doi.org/10.1177/0971355719893499, February 24, 2020

23

Appendix 1: Proof of Trust Protocol Details
The PoT protocol uses a state-based approach. For validating any transaction, having the latest state

is sufficient and each valid transaction updates the state.

This state should have following components, which can be maintained as tables in a database.

1. Blocks and transactions tables
2. Identity tables: wallets, personids
3. Trust scores by personid combinations (including network trust score where source personid

corresponds to the network trust manager smart contract)
4. Tokens
5. Balances by wallet-token combinations
6. Contracts
7. Distributed organizations
8. Nodes and their liveness status
9. Stake ledger

The state can be changed by execution of transactions by each node locally. Transactions are of

following types.

Type Function Signed by
1 Identity management – create new personid and wallet, create a linked

wallet etc
Introducer

2 Token management – create a new token, issue more of an existing token,
destroy token etc

Asset custodian /
contract manager

3 Smart contract execution – set up a smart contract from template, deploy
it, execute specific functions in it, destroy it (if applicable)

Various

4 Two-way token transfer – sender1 sends token1 to sender 2 and sender2
sends token2 to sender1

Sender1 and
Sender2

5 One-way token transfer – sender1 senders token1 to sender 2 Sender1
6 Alter trust score – person1 alters the trust score of connection directed

from person1 to person2
Person1

7 Update network liveness of a node Node owner
8 Smart contract internal transaction None

A transaction in Newrl has the standard format as below.

{“transaction”: “data”, “signatures”: [{sign1}, {sign2}]}

Validation of a transaction is for its signatures as well as economics e.g. for a transfer transaction, the

sender needs to have adequate balance.

Transaction handling

24

In PoT, any node can broadcast a transaction to its peers. Receiving peers ignore transactions that

they already have (checked using transaction id). For valid transactions, each node stores them in the

local memory pool and transmits it onwards through a gossip protocol using the transport layer (by

default, this is the libp2p protocol).

Selection of block creation committee and block minting node

PoT involves block creation by a chosen node and verified by a randomly selected committee. The

minting block is selected randomly inside the committee, where the selection probability is

proportional to its trust score. Additionally, each node is required to deposit a fixed number of

valuable tokens of specified types (Newrl token or USDC stablecoins) in a dedicated smart contract

that governs the protocol.

For arriving at consensus, the network undertakes the following steps in each round for a new block

creation. The below process begins for a given block immediately upon the inclusion of the previous

block.

We assume the following at the end of the state update after the latest block inclusion.

N = Number of total nodes in the network (from the nodes table)

ei = Liveness score of the ith node (from the nodes table, currently set as 1 for all entries)

si = Network trust score of the ith node (derived from the trust score table)

Hcommittee = Threshold of trust score for inclusion in the block creation committee (set at 0 at genesis)

Hlive = Threshold of liveness score for inclusion in the block creation committee (set at 1 at genesis)

C = Size of the block creation committee (set at 10 at genesis)

The selection space S for block creation group is created is follows.

 𝑛𝑜𝑑𝑒! ∈ 𝑆	𝑖𝑓	𝑠! ≥ 𝐻"#$$!%%&& 	𝑎𝑛𝑑	𝑒! ≥ 𝐻'!(&

 𝑆 = 𝑠𝑜𝑟𝑡(𝑆, 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔, 𝑝𝑒𝑒𝑟𝑖𝑑)

Since the state is same for all participants, S will be identical for them.

We select a total of C nodes in the committee from S.

 𝑆) = 𝑆

 𝑑) = 	𝑟𝑎𝑛𝑑𝑜𝑚(𝑠𝑒𝑒𝑑 = ℎ𝑎𝑠ℎ'*%&+%!"#$%) × 𝑠𝑖𝑧𝑒(𝑆))

25

 𝑛𝑜𝑑𝑒, = 𝑛𝑜𝑑𝑒	𝑎𝑡	𝑑,%-𝑝𝑙𝑎𝑐𝑒	𝑖𝑛	𝑆,

 𝑆, = 𝑆,.) − 𝑛𝑜𝑑𝑒,

 𝑑, = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑠𝑒𝑒𝑑 = 𝑑,.)) × 𝑠𝑖𝑧𝑒(𝑆,)

When j = C, the selection process halts. C nodes are now selected for the committee.

The block minting node is always selected from the committee itself through a random selection with

the previous block hash as the seed. Since everyone is starting with the same state and using the same

hash as the first seed, the choices of all committee members as well as the minting node for a block

will be same for all.

Block creation by the minting node and broadcast to committee

The minting node is expected to create a block using the below-mentioned transactions.

1. Standard transactions

The node minting a new block will incorporate as many transactions in its local memory pool

as fit a single block - ordered in terms of their timestamp. It also transmits these transactions

to the committee members, with the expectation that the committee members either already

have these transactions or can update their local memory pool with them if they don’t.

2. Block reward transaction

The block reward transaction in each block creation automatically, with the block creating

node as the recipient.

3. Network trust score transaction

The minting node calls the network trust score manager smart contract with a selected set of

receipts from its memory pool, which refer to previous blocks (not necessarily just the latest

one). The smart contract consumes the receipts and updates network trust scores. Each block

has exactly one transaction like this. It is further described in the ‘repercussions of voting’

section below.

The block reward and network trust score transactions are not separately signed but are deemed

signed by the minting node through its signature on the overall block. This removes the need for

validating these transactions by other nodes since these are not transmitted ahead of time anyway.

The selected node also updates its local state. The transaction fees from all included transactions in

the block are transferred to the treasury address of Newrl. The treasury uses its balance as a liquidity

pool of the tokens allowed for the transaction fees.

26

The mining node broadcasts the block to the rest of the committee members with its own signature

and receipt as follows.

Block format

Each block in Newrl has the following format.

block_index An integer

proof Set at 0 for regular block and 42 for empty block

Status Set at 1 for regular block, -1 for empty block created because invalid submission by block

creator and -2 for empty block created because of time-out

creator_wallet The actual creator of that block – sentinel node for empty blocks

expected_miner Expected creator of the block at that index

committee Committee of nodes that will signed off on its validity

timestamp Time in seconds since the UNIX epoch

previous_hash Hash of the previous block

transactions_hash Root hash of the transactions

transactions_data {standard transactions, network_trust_score_update_transaction}

“Transactions data” includes only the transaction id for standard transactions. The actual transaction

data is not sent and instead is taken locally by each node using the transaction id in the received block.

This avoids any malicious modifications in the transaction by the minting node and hence reduces the

need to validate the transaction again by the receiving node.

Block receiving and validation by other nodes in the committee

When a committee member receives a block from the minting node, it first validates the block as

shown in the box below.

This process leads to creation of a receipt, which looks as follows.

{“receipt_data”: {“block_index”:<index>,

“block_hash”: <hash>,

“vote”: 1, -1 or -2,

“address”:<address>},

“signature”:<signature>}

{ block_data : {}

 signature : {}

 receipt : {} }

27

Normally, a vote of 1 reflects the True status as per earlier steps above and vote of -1 reflects False

status. However, a node is at liberty to send a vote of -2 that indicates that it has insufficient

information, or it does not want to vote. This is useful in avoiding the other committee members as

well as the wider network waiting for a given member’s vote if it wants to abstain. Allowing it to vote

-2 reduces the confusion about whether a node is inactive or abstaining.

Each committee members transmits its receipt to all other committee members and also transmits

received receipts to others, in case they haven’t received those from the original sender for whatever

reasons. It is expected that at the end of the block_creation_timeout, all live committee members will

have a sufficient number of receipts to conclude on block validity.

Using receipts to validate a block

We assume the following variables.

pi = f(si)

vi = vote of ith committee member

P = number of 1 votes

G = number of -1 votes

Z = number of -2 votes

The following steps are used to validate a block based on its receipts.

𝑉/ =>𝑝𝑟𝑜𝑏!

0/1

!2)

Where,

if block_index != current_latest_block_index + 1:
 return (Status = False)
if previous_block_hash != hash(latest_block):
 return (Status = False)
if not valid(block_signature) or signer!= minting_node:
 return (Status = False)
synchronize(memory_pool, peers)
for transaction_id in transaction_ids:
 if transaction_id not in memory_pool:
 return (Status = False)
if not valid(network_trust_score_transaction):
 return (Status = False)
return (Status = True)

28

 𝑝𝑟𝑜𝑏! = 𝑝! 	(𝑖𝑓	𝑣! = 1)	𝑎𝑛𝑑	[1 − 𝑝!](𝑖𝑓	𝑣! = −1)

𝑉. =>𝑝𝑟𝑜𝑏!

0/1

!2)

Where,

 𝑝𝑟𝑜𝑏! = 𝑝! 	(𝑖𝑓	𝑣! = −1)	𝑎𝑛𝑑	[1 − 𝑝!](𝑖𝑓	𝑣! = 1)

 𝑌 = 𝐶 − (𝑃 + 𝐺 + 𝑍)

If Y > 0, there are pending receipts.

If V+ > V-, assume all the pending receipts are -1

If V+ < V- , assume all the pending receipts are 1

Calculate Q+ and Q- as follows.

𝑄/ = > 𝑝𝑟𝑜𝑏!

0/1/3

!2)

Where,

 𝑝𝑟𝑜𝑏! = 𝑝! 	(𝑖𝑓	𝑣! = 1)	𝑎𝑛𝑑	[1 − 𝑝!](𝑖𝑓	𝑣! = −1)

𝑄. = > 𝑝𝑟𝑜𝑏!

0/1/3

!2)

Where,

 𝑝𝑟𝑜𝑏! = 𝑝! 	(𝑖𝑓	𝑣! = −1)	𝑎𝑛𝑑	[1 − 𝑝!](𝑖𝑓	𝑣! = 1)

If V+ > V-,

If Q+ > V-, consider the block valid, else consider the outcome indeterminate.

If V+ < V-

 If Q- > V+, consider the block invalid, else consider the outcome indeterminate.

The above algorithm ensures that even with partial receipts a node can make a decision about the

validity of a block. The algorithm also ensures consistency of decision with arrival of new valid receipts.

An “indeterminate” decision either changes to valid or invalid or remains indeterminate. A “valid” or

“invalid” decision remains the same with new receipts as well.

29

Committee member action after confirming the validity/invalidity of a block post receipts

Each committee member confirms the status of the block in light of the receipts from other members,

as described in the earlier section.

A. Indeterminate status:

If the status is indeterminate for all live members (which is possible if only a minority of the

committee members are active) after a time-out limit described below, the committee

members mint an empty block (with timestamp of 1 second after that of the previous block)

without any signature, create receipts of “1” locally and broadcast it within the committee.

Then they move to next step of broadcasting the empty block (validated with an inadequate

number of receipts.) In this case, they do not transmit the valid non-empty block created by

the minting node.

B. Valid status:

If the status is valid, the members broadcast the block data, minting node’s signature for it

and the receipts they have locally to their respective peers.

C. Invalid status:

If the status is invalid, they broadcast the invalid block with the accompanying receipts. Then,

similar to 1 above, they mint an empty block locally (with timestamp of 1 second after that of

the previous block) with no signature and broadcast it amongst themselves to create receipts

for it. This empty block with adequate receipts is then broadcast.

After this, the committee members update their state locally in case of valid block addition. For empty

blocks, there are no state changes other than addition to the blocks table.

Time-outs inside the committee

It may happen that the node everyone considers chosen does not conclude so because it has a wrong

or non-updated version of the state. It may also happen that the node chosen is simply inactive.

Also, while a valid block might have been minted, only an insufficient number of committee members

may be active.

In the above instances, it is necessary for the committee to conclude that they cannot wait any longer

and must move forward with minting of an empty block. This time period is a protocol level constant

and is referred to as t1. This is the time trigger for the indeterminacy referred to in the previous section.

30

New block verification by rest of the network

After committee members broadcast any block as described above to their respective peers and then

onwards to the wider network, the block verification and inclusion/rejection by the rest of the network

(i.e. other than the committee) is as follows. The first part is to validate the block using receipts alone.

This is done as follows.

1. Validate receipts
a. Must be from someone who is a committee member
b. Must be signed correctly

2. Check for the block referred to in the receipt - check if the broadcasted block’s hash matches that
in the receipt

3. Try to validate the block using the received receipts as described earlier above.
4. If validity status is indeterminate, wait for more receipts.

The validation of block from first principles is same as that described earlier in the context of

committee members.

Following are the next steps locally taken for each node upon receiving a block broadcast.

Type of broadcast Action Further
broadcast?

Standalone valid receipts Store in memory pool Yes

Voted invalid block i.e.
one with adequate “-1”
receipts

Do not act on the block, store receipts and block in memory
pool

Yes

Voted valid block i.e. one
with adequate “1”
receipts

Move to next step of block validity from first principles Yes if valid

Voted empty block with
adequate number of
receipts.

Move to next step of block validity from first principles Yes if valid

Empty block with
inadequate number of
receipts, within time-out
period.

Wait for a time-out period to check if another block
broadcast is received.

No

Empty block with
signature of sentinel
node, after time-out
period.

If there has been no valid block with adequate number of
receipts up to that point, move to next step of block validity
from first principles.

Yes if valid and
not ignored

Empty block with
inadequate number of
receipts, after time-out
period.

Query a few randomly selected nodes from the network for
a new block. If they send a block with adequate number of
receipts, refer to above cases.
If they send an empty one with sentinel node signature,
refer to the above cases.

No

31

Non-empty block with
correct signature but an
inadequate number of
receipts, within time-out
period

If there is an empty block with adequate number of receipts,
already received, ignore this non-empty block.
Else, wait to receive remaining receipts. If adequate number
of receipts is received, go to appropriate step in the above.
Do not act on the block in either case, in terms of appending
it to local chain and updating state, if adequate number of
receipts not received.

No

Non-empty block with
correct signature but an
inadequate number of
receipts, after the time-
out period

Query a few randomly selected nodes for a new block. If a
valid non-empty or empty block with adequate number of
receipts or an empty block with sentinel node signature is
received, go to the appropriate next step from above.

No

No block received at all
even after time-out
period.

Query a few randomly selected nodes for a new block. If a
valid non-empty or empty block with adequate number of
receipts or an empty block with sentinel node signature is
received, go to the appropriate next step from above.

No

Time-outs in the wider network, outside the committee

There is a network-wide time-out window, represented by t2 (> t1 mentioned earlier), which is the

outer limit of time for which a node is required to wait for receiving a valid block with adequate

receipts from the block creation committee (even if it’s empty).

After this time-out, to avoid the network getting stuck (e.g. in the instances of indeterminate empty

blocks from a committee), specifically chosen sentinel nodes (typically with the highest trust scores)

broadcast an empty block with their signature. If received after the network-wide time-out period and

in absence of an adequate-receipt valid block until then, the recipients in the network broadcast this

block onwards. This is unlike the indeterminate blocks which are not broadcast onwards as a rule.

This will not create confusion or forking because empty blocks are all the same, irrespective of whether

committee sends them or a specific node. The purpose of this step is only to avoid network being stuck

for want of a valid block (even if empty) to add. To avoid dishonest nodes from sending empty blocks

at random, this action is restricted to a few chosen sentinel nodes which have very high trust scores.

In any case, nodes can choose to locally add an empty block as well, after the time-out period. Hence

there is no additional information in this action other than a confirmation that this block is meant to

be empty. Also, empty blocks sent in addition to valid blocks with adequate signatures are ignored

anyway and the sentinel nodes sending such blocks are removed from the sentinel list for subsequent

rounds.

32

Post-validation process by a node

When a receiving node concludes that it is ready to process a received block, as per the previous

section’s method, it proceeds as follows.

1. It validates the block for its data from first principles, as described earlier. This is not based on

receipts but on the actual transactions included in the block. This is same as the validation

carried out inside the committee.

2. If the block is found to be invalid despite the receipts suggesting otherwise, the node rejects

the block and does not add anything for the time being. It does not broadcast the received

message forward either. Its expectation here is that the full network will arrive at consensus

based on the validity of the block anyway and if the node itself has mistakenly considered the

received block to be invalid, it can catch up with the rest of the network in subsequent rounds

by querying its peers for the updated blocks.

It may yet happen that the committee and minting node were dishonest, and they send an

invalid block. In such cases, majority of the honest nodes will not update their local state and

keep waiting. The sentinel nodes can send an empty block to get the network restarted.

3. If found valid, it appends the new block to its own chain. It also transmits the whole message

onwards to its peers, as stated in the previous section.

4. After a successful update as above, a node also updates its local states according to the

transactions in the new block.

In future, the block addition broadcast will also include changes in the state so that receiving nodes

can also double check their state updates.

Repercussions of voting

Each process of validation of a block by the committee members results in the creation of a vote

receipt by that member about the block being valid or not. This receipt has a reference to a block

index and the hash of the block being voted on besides the actual vote and the signature of the voter.

These receipts are broadcast at first by their creator and then onwards like standard transactions by

the others in the network i.e. each recipient confirms the validity of the signature and includes in the

memory pool as well broadcasts onwards if it is valid. This way, most of the participants in the network

have valid receipts of votes by committee members on a given block. While these receipts are used

by the committee as well as the rest of the network for validating the current block, they are retained

in the memory pool for subsequent processing in network trust score update transaction as follows.

33

At the time of new block addition, the minting node incorporates as many receipts as possible, with a

preference to older receipts, inside the “network trust score update” transaction referred to earlier,

calling the network trust score manager smart contract.

The call input reads as follows.

data = {receipt1, receipt2…. receiptK}

The network score update algorithm uses the receipts with the following logic.

1. Validate the signature on the receipt again. If valid, check the block index referred to in it.

2. Refer to the archive of the right committee members for that block index.

3. If the receipt is not from any of the committee members, update the trust score of the sender

of the receipt downward. This is an instance of someone attempting to pose as a committee

member without being one.

4. If the receipt is from someone in the correct committee list, check the actual hash of the block

index referred to in the receipt from the local chain copy. Follow a different process for an

empty block and a non-empty block.

5. For a non-empty block, match this actual hash with the hash of the block referred to in the

receipt.

6. If the hashes match, and the vote is “1”, update the trust score of the sender of the receipt

upwards as specified. If the vote is “-1”, update the trust score downwards.

7. If the hashes do not match, and the vote is “1”, update the trust score of the sender of the

receipt downwards as specified. If the vote is “-1”, update the trust score upwards.

8. In a special case of an empty block, the archives may have one discarded block with

inadequate “1” votes and either adequate or inadequate “-1” votes. This block is evaluated

for its validity. The receipts that voted for this block as “-1” lead to a trust score reduction of

those nodes. The receipts that voted “1” for this block lead to a trust score increase of those

nodes. This is the instance of indeterminate valid vote or minority being honest but majority

in the committee forcing its way to an empty block.

This process is carried out by the rest of the network as well when that newly added block is

considered valid by it. This way, the network uniformly updates the trust scores of all the voting

committee members as well as any other nodes that may have tried to pose as committee members.

It also updates for attempts at denial of service in the rare instances where the majority of the block

creation committee happens to be dishonest, leading to addition of an empty block (as described in 8

above). The catch-up with the current block may vary as per number of receipts pending. However,

34

the protocol is adjusted to incorporate more receipts during the periods of fewer other transactions.

(This is analogous to how a human brain updates memories during sleep!)

Network Contribution Trust score

Each node on Newrl network is linked to a specific personId. The transactions and blocks broadcasted

by the node are signed with one of the wallets mapped to this personId. The selection probability of

each node for minting the next block is proportional to its network trust score.

Assume a network size of N nodes. We define a variable Δ = 0.2 by default. It can be reset by the Newrl

community.

Every new joining node has a trust score of 10.

The trust score si of ith node is modified by the trust score manager, using the receipts provided to it,

as follows.

1. Each valid block creation by that node increases its trust score by a value as follows.

𝑠! = 𝑠! + 10∆	

2. Each invalid block creation by that node decreases its trust score by a value as follows.

𝑠! = 𝑠! − 100∆

3. Honest receipts update the trust score as follows.

𝑠! = 𝑠! + ∆	

4. Dishonest receipts update the trust score as follows.

𝑠! = 𝑠! − 10∆	

The value of si is capped at 100 and floored at -100. In state database, the value is stored with 4

decimals, so a score of 25 reads 250000.

The trust score change is asymmetric. For instance, it would take a node just 50 dishonest receipts to

get from a score of 100 to 0 while it would take more than 500 honest receipts to climb back up from

0 to 100. In terms of blocks the same numbers are 5 dishonest blocks to go down from 100 to 0 and

50 honest blocks to make the journey back up.

35

Rehabilitating a node

It is possible that a node misbehaves and gets past the lower bound of 0 trust score to be included in

any future committee. This would make it impossible for a node to be rehabilitated if it wanted to

prove its honesty.

To deal with this situation, a rehabilitation smart contract can be called by at least C persons with trust

scores in the top decile of the network and with a collective deposit of at least K*C times that of the

standard node deposit (K set at 100 to start with). This transaction if picked up by a minting node will

reset the trust score of the rehabilitating node at 1. The community can decide to use the deposit

submitted here to compensate any loss from malicious behaviour of the rehabilitated node in future.

Byzantine Fault Tolerance and other security considerations in Newrl

Unlike the current public blockchains, the nodes participating in the network of Newrl are not

anonymous. Secondly, their behaviour history is retained in the form of the network trust score. More

specifically, a node creating a wrong block is immediately recognized before the block is broadcast, by

the other members of the block creation committee. Since this committee is randomly chosen, the

probability of malicious actors being able to reliably control its outcome is vanishingly small.

Assuming the proportion of dishonest nodes is d, even in absence of trust scores, the raw probability

of a committee of C parties having a majority of dishonest nodes is given by the following.

𝑝4!+-#5&+%_"#$$!%%&& = 𝑑(8/:)

For d=0.33 and C=20, this probability is 0.002%.

Within a committee, since trust scores are used to arrive at validation of a block by its members, the

trust_score informed votes have a vanishingly small probability of being manipulated by even a

majority of dishonest nodes. If the honest nodes with high scores vote against a new block, the

dishonest nodes’ votes for the block can still be negated.

Even after a block is broadcast by a committee, it is open to audit by others in the network. Since

others too additionally validate a broadcasted block and ignore it if found invalid, the attacker’s work

is not finished even after being able to add an incorrect block through majority control of a committee.

An attempt to vote maliciously against a valid block, with the objective of simply creating hurdles in

the regular operations of the network (and prompting addition of an empty block) also gets caught

fast enough as empty blocks prompt the network to review the discarded block and update trust

scores - punishing majority if the block were valid and minority if it were indeed invalid.

36

The most reliable defence against malicious actors is that the community of Newrl participants is built

organically with gradual addition of persons known to someone or other in the existing network. A

new person cannot join the network without being invited by someone who can vouch for them. This

promotes honesty without centralizing control of the network.

Lastly, since all wallets are KYC verified, an attacker even after succeeding to steal tokens will not be

able to use the stolen tokens for anything without revealing their identity. It is akin to stealing money

into one’s typical KYC-ed bank account (as against the numbered bank account of the Swiss Banks

variety, which are analogous to the current blockchains’ addresses).

A Sybil attack is extremely difficult to employ on Newrl, for the following reasons.

a. Each node on Newrl has an associated personId and a KYC wallet. A sybil attacker will need to

impersonate several persons along with their valid documents.

b. Each wallet on Newrl is added upon another person/institution vouching for that person. This

reduces the speed with which multiple new accounts can be added by a malicious actor.

c. A new node does not have a very high probability of being selected for minting a new block.

It has to patiently build good behaviour history over time.

d. Each new block added is still verified by others in the block addition committee which is

chosen randomly for each block.

The denial-of-service attack in Newrl is avoided by throttling the number of transactions a node can

receive from another node.

Overall, would-be attackers have to patiently build at least moderate trust scores through valid

contributions over time and valid KYC at the start, to be even in the reckoning for being able to

influence the outcome of any voting. Even then their attacks are thwarted by the multiple checkpoints

on validity of transactions, blocks and receipts.

37

Appendix 2: Deriving the summary trust score of a participant

It would be useful to have a summary trust score based on the community’s assessment of an
individual. Such a summary trust score is derived as follows.

Start with community trust score estimate of 1.0 for all nodes.

𝐶! = 1.0
Carry out iterations (ITER times) as follows. ITER is a protocol constant and is set to 100 by default.

1. Start with the node that has the highest trust score in the current state. For equal scores, arrange
nodes alphabetically in the order of their personids.
2. For the ith node with scores sji (score of node i in the assessment of node j), the community trust
score is,

𝐶! =
∑ 𝐶,𝑠,!,<!

∑ 𝐶,,<!

3. One iteration is finished when Ci for the last node is updated.

Calculate the scores with 4 decimals of accuracy. After ITER iterations, round the Ci values to two
decimals and multiply the same by 100 to arrive at an integer value of the score.

38

Appendix 3: Micro-bank architecture in Newrl
Conventional banks have two major types of liabilities - equity and deposits, and two major types of

assets - loans and liquid assets (cash and government bonds). A microbank follows a similar

architecture. There are following participants in the microbank DAO.

1. Community depositors: These are individuals or small businesses that pool their money in the

form of stablecoins to create the deposit pool for lending.

2. Borrowers: These are individuals or small businesses that borrow and create the loanbook.

3. Institutional debt investors: These are pools of capital from outside the community which

evaluate the microbank’s records in solvency and decide to contribute to the liability pool with

their own money.

The balance sheet of a microbank on the liability side has deposits of depositors from within the

community and senior debt of institutional debt investors from outside. The latter is senior in the

sense of tranching of risk. All defaults in the loanbook first affect the deposits portion and only when

it is exhausted, does it affect the senior debt. Given the lower risk, the returns on senior debt are

lower than those on deposits.

The asset side of the balance sheet is primarily made of loanbook constructed as a pool of all loans of

the microbank. There is also a small allocation to liquid assets like stablecoin or highly liquid and

stable-in-price tokens, if any.

This is shown in the diagram below.

A microbank is characterised by specific rules on whom to lend and how much. These specifications

are encoded in its lending smart contracts. These specifications are governed by the governance token

of the microbank. Unlike conventional banks where equity holders have all the power, in a microbank,

the governance tokens are spread out across depositors, institutional debt investors and borrowers.

Hence all stakeholders get to vote on how a microbank’s operations are run. To be clear, this is not

execution of specific loans, which are anyway managed by predetermined smart contracts. This is

about the overall framework within which the microbank operates. For example, how much liquid

assets to keep aside, what is the upper limit per borrower, how long of a cure period a borrower

should receive are some questions that the participants need to agree on and encode in the

governance structure. This is open to revision based on votes of all the governance token owners from

time to time.

39

Diagram: Microbank architecture

The next phase of evolution of a microbank is an ability to issue its own money token. In the above

description, the depositors and institutional debt investors brought stablecoins purchased/sourced

elsewhere into the smart contract of the microbank DAO, which was then lent onwards to the

borrowers. The DAO smart contract issues tokens of deposits to the depositors and tokens of senior

debt to the institutional debt investors. These tokens are transferable. If the senior debt and deposits

are traded at some price, presumably driven by the assessment of the broader ecosystem of the

solvency of a given microbank, the bank can issue fresh liability tokens (either deposits or senior debt)

directly in the accounts of the borrowers. They can then trade these liability tokens for stablecoins in

the secondary market for these. That way, the microbank does not need to directly source from the

depositors and institutional debt investors so long as they are happy to buy the microbank’s liability

tokens in the secondary market from the borrowers.

This comes close to the current operations of the banking system. The banks credit the account of a

borrower with ‘freshly issued credit money’ which is then used by the borrower to pay for things. In

the banking system, the price of all liability tokens of banks is constant at 1 unit of the fiat currency.

This need not be a constraint in the microbanking system.

A further step in the evolution of microbanks would be the emergence of a ‘central bank DAO’ that

consists of individual microbanks and the mutualization of their liability tokens. The central bank DAO

can ensure smooth functioning of the system by creating liquidity for solvent microbanks’ liability

tokens as needed.

40

Appendix 4: Mutualization of tokens - details
The term “contributor” refers to persons owning assets who are participating in the process. The term

“pool” refers to the collection of all tokens of all assets included in the process. Other terms have the

conventional meanings associated with them.

Let us say there are N contributors to the mutualization pool. The ith contributor’s contribution to the

pool in terms of number of tokens is Qi and the price of that token in a common currency (such as the

US Dollar) is Pi.

The total value of the pool is

V = Sum(over all i, Pi*Qi)

If a total of Qmut tokens are created to represent the pool, the price of each mutualized token is,

Pmut = V / Qmut

The value that each contributor gets back is same as that contributed by her i.e. Pi*Qi, but stated in

terms of mutualized tokens. If Ri represents the number of mutualized tokens that each contributor

gets in return, it can be determined as follows.

Ri = Pi * Qi / Pmut

Simplifying further,

Ri = Qmut * Pi * Qi / sum(over all i, Pi * Qi)

A generalisation of the first-time mutualization is ongoing mutualization and demutualization.

Consider the jth contributor looking to add Qj tokens of price Pj to an existing mutualization pool with

mutualized token quantity Qmut and current value V. This value V is constantly updated for changing

prices Pi in the expressions Sum(over all i, Pi*Qi).

The number of mutualized tokens that the incoming jth contributor receives is linked to the current

value, current mutualized token supply and newly contributed value by her. The price of the

mutualized tokens is maintained to be the same before and after this inclusion. This leads to the

following result. Rj represents the number of mutualized tokens received by the jth contributor. It is

determined as follows.

Qmut + Rj = (V + Qj*Pj) / Pmut

Therefore,

Rj = (V + Qj*Pj) / Pmut - Qmut

41

Next, consider the case of demutualization by an investor for the kth token i.e. someone returns a

number Rgen of mutualized tokens and asks for a suitable number of the kth tokens in return. It is not

necessary that this is the same person that contributed the original kth tokens.

The value returned is Rgen*Pmut where Pmut is the latest price of the mutualized token. Qk

represents the number of kth tokens returned to this investor in return for her Rgen mutualized tokens

and Pk the price of the kth token. After returning Qk of the kth token to the demutualizing contributor,

the pool value is V - Qk*Pk and number of outstanding mutualized tokens is Qmut - Qk.

Since the price of each pool token needs to remain the same after the transfer, the below relationship

holds.

Pmut = (V - Qk*Pk) / (Qmut - Rgen)

Qk = (V - Pmut*(Qmut - Rgen)) / Pk

The mutualization is carried out through a smart contract on the blockchain. This contract has the

above mentioned logic embedded in it as a computer code. The contract can be called through

blockchain transactions which carry as input the transfer to the contract of some number of tokens -

either of a constituent or of the mutualized pool. The contract returns either the mutualized token

(during a mutualization) or the specific constituent token (during demutualization). The contract can

also include additional risk controls such as maximum and minimum proportion of each constituent

in the total. It can be perpetual in time or have a definite maturity date upon which it automatically

demutualizes and replaces mutual tokens with constituent tokens at the applicable exchange rates.

Like a typical smart contract on public blockchains, the mutualization smart contract is typically

unalterable. However, participants can provide for alterability through consensus.

